These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of endoplasmic reticulum stress and activation of MAP kinases in beta-lapachone-induced human prostate cancer cell apoptosis. Author: Lien YC, Kung HN, Lu KS, Jeng CJ, Chau YP. Journal: Histol Histopathol; 2008 Nov; 23(11):1299-308. PubMed ID: 18785111. Abstract: Beta-lapachone, an o-naphthoquinone, induces various carcinoma cells to undergo apoptosis, but the mechanism is poorly understood. In the present study, we found that the beta-lapachone-induced apoptosis of DU145 human prostate carcinoma cells was associated with endoplasmic reticulum (ER) stress, as shown by increased intracellular calcium levels and induction of GRP-78 and GADD-153 proteins, suggesting that the endoplasmic reticulum is a target of beta-lapachone. Beta-Lapachone-induced DU145 cell apoptosis was dose-dependent and accompanied by cleavage of procaspase-12 and phosphorylation of p38, ERK, and JNK, followed by activation of the executioner caspases, caspase-7 and calpain. However, pretreatment with the general caspase inhibitor, z-VAD-FMK, or calpain inhibitors, including ALLM or ALLN, failed to prevent beta-lapachone-induced apoptotic cell death. Blocking the enzyme activity of NQO1 with dicoumarol, a known NQO1 inhibitor, or preventing an increase in intracellular calcium levels using BAPTA-AM, an intracellular calcium chelator, substantially inhibited MAPK phosphorylation, abolished the activation of calpain, caspase-12 and caspase-7, and provided significant protection of beta-lapachone-treated cells. These findings show that beta-lapachone-induced ER stress and MAP kinase phosphorylation is a novel signaling pathway underlying the molecular mechanism of the anticancer effect of beta-lapachone.[Abstract] [Full Text] [Related] [New Search]