These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Knockdown of B-Raf impairs spindle formation and the mitotic checkpoint in human somatic cells. Author: Borysova MK, Cui Y, Snyder M, Guadagno TM. Journal: Cell Cycle; 2008 Sep 15; 7(18):2894-901. PubMed ID: 18787396. Abstract: It is well established that B-Raf signaling through the MAP kinase (ERK) pathways plays a prominent role in regulating cell proliferation but how it does this is not completely understood. Here, we show that B-Raf serves a physiological role during mitosis in human somatic cells. Knockdown of B-Raf using short interfering RNA (siRNA) resulted in pleiotropic spindle abnormalities and misaligned chromosomes in over 80% of the mitotic cells analyzed. A second B-Raf siRNA gave similar results suggesting these effects are specific to downregulating B-Raf protein. In agreement with these findings, a portion of B-Raf was detected at the spindle structures including the spindle poles and kinetochores. Knockdown of C-Raf (Raf-1) had no detectable effects on spindle formation or chromosome alignment. Activation of the spindle assembly checkpoint was found to be dependent on B-Raf as evident by the inability of checkpoint proteins Bub1 and Mad2 to localize to unattached kinetochores in HeLa cells treated with B-Raf siRNA. Consistent with this, live-cell imaging microscopy showed that B-Raf-depleted cells exited mitosis earlier than control non-depleted cells. Finally, we provide evidence that B-Raf signaling promotes phosphorylation and kinetochore localization of the mitotic checkpoint kinase Mps1. Blocking B-Raf expression, ERK activity, or phosphorylation at Ser-821 residue perturbed Mps1 localization at unattached kinetochores. Thus, our data implicates a mitotic role for B-Raf in regulating spindle formation and the spindle checkpoint in human somatic cells.[Abstract] [Full Text] [Related] [New Search]