These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. Author: Subileau M, Schneider R, Salmon JM, Degryse E. Journal: J Agric Food Chem; 2008 Oct 08; 56(19):9230-5. PubMed ID: 18788709. Abstract: The molar conversion yield of Cys-3MH into 3MH, during alcoholic fermentation, was traced using a deuterated isotope of the precursor added to different Sauvignon Blanc musts. This yield is close to that found in synthetic media supplemented with synthetic Cys-3MH, that is, below 1%. Yet, this represents only 3-7% of the total 3MH production in wine. This clearly shows that Cys-3MH is a precursor of 3MH, but not the main one in the different musts tested. The contribution of ( E)-hex-2-enal, which has been suggested as another potential precursor of 3MH, was discarded as well, as shown using also a deuterated analogue. The third suggested precursor of 3MH is a glutathionyl-3MH (G-3MH), which upon proteolytic degradation could release Cys-3MH. The knockout of the OPT1 gene, which encodes the major glutathione transporter, reduces 3MH accumulation by a 2-fold factor in grape must as compared to the wild type strain. Consequently, it is deduced that major 3MH precursor(s) are transported into yeast via Opt1p, which is in favor of G-3MH being a 3MH precursor. This work opens the search for the major natural precursor(s) of 3MH in Sauvignon Blanc must.[Abstract] [Full Text] [Related] [New Search]