These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Competing adsorption between hydrated peptides and water onto metal surfaces: from electronic to conformational properties.
    Author: Ghiringhelli LM, Hess B, van der Vegt NF, Delle Site L.
    Journal: J Am Chem Soc; 2008 Oct 08; 130(40):13460-4. PubMed ID: 18788811.
    Abstract:
    Inorganic-(bio)organic interfaces are of central importance in many fields of current research. Theoretical and computational tools face the difficult problem of the different time and length scales that are involved and linked in a nontrivial way. In this work, a recently proposed hierarchical quantum-classical scale-bridging approach is further developed to study large flexible molecules. The approach is then applied to study the adsorption of oligopeptides on a hydrophilic Pt(111) surface under complete wetting conditions. We examine histidine sequences, which are well known for their binding affinity to metal surfaces. Based on a comparison with phenylalanine, which binds as strong as histidine under high vacuum conditions but, as we show, has no surface affinity under wet conditions, we illustrate the mediating effects of near-surface water molecules. These contribute significantly to the mechanism and strength of peptide binding. In addition to providing physical-chemical insights in the mechanism of surface binding, our computational approach provides future opportunities for surface-specific sequence design.
    [Abstract] [Full Text] [Related] [New Search]