These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisome proliferator-activated receptor-gamma and growth inhibition by its ligands in prostate cancer. Author: Nagata D, Yoshihiro H, Nakanishi M, Naruyama H, Okada S, Ando R, Tozawa K, Kohri K. Journal: Cancer Detect Prev; 2008; 32(3):259-66. PubMed ID: 18789607. Abstract: BACKGROUND: Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is expressed in certain human cancers. Ligand-induced PPAR-gamma activation can result in growth inhibition and differentiation in these cancer cells; however, the precise mechanism for the anti-proliferative effect of PPAR-gamma ligands is not clear. METHODS: In this study, we examined the expression of PPAR-gamma in human prostate cancer and the effect of two PPAR-gamma ligands, 15 deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) and troglitazone, on prostate cancer cell growth. RESULTS: PPAR-gamma is frequently over-expressed in androgen independent prostate cancer cell lines and human prostate cancer tissues (22 of 47; 47%). Both 15d-PGJ2 and troglitazone inhibited proliferation and DNA synthesis of prostate cancer cell lines in a dose-dependent manner, and slightly increased the proportion of cells with S-phase DNA content. Prostate specific antigen (PSA) promoter reporter assays showed that troglitazone and 15d-PGJ2 down-regulated androgen stimulated reporter gene activity in prostate cancer cell lines LNCaP. Interestingly, LNCaP with troglitazone dramatically suppressed PSA protein expression without suppressing AR expression. CONCLUSIONS: Taken together, these results suggest that PPAR-gamma ligands may be a useful therapeutic agent for the treatment of prostate cancer.[Abstract] [Full Text] [Related] [New Search]