These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. Author: Lin L, Ling BD, Li XZ. Journal: Int J Antimicrob Agents; 2009 Jan; 33(1):27-32. PubMed ID: 18790612. Abstract: Of 112 non-repetitive clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex, 80% were resistant to a variety of structurally unrelated antimicrobials although all isolates were susceptible to minocycline and polymyxin. Resistance to carbapenems occurred in 8% of the isolates. The presence of adeSR-adeABC, adeDE and adeIJK drug efflux system genes and class 1 integron genes (integrase gene int1) was assessed by polymerase chain reaction (PCR) in relation to the susceptibility of the isolates to 20 antimicrobials. The majority of isolates (75%) with high levels of multidrug resistance were positive for adeSR-adeABC and adeIJK as well as int1 and thus belong to A. baumannii (i.e. genomospecies 2). Positive adeE was only observed in adeSR-adeABC/adeIJK/int1-negative isolates (8%; likely belonging to Acinetobacter genomospecies 3) that were relatively susceptible to several agents, and adeE expression was undetectable. The results reveal a possible association between adeABC/adeIJK and int1 in multidrug-resistant isolates of A. baumannii. In addition, differential distribution of the resistance-nodulation-cell division (RND) genes can likely be used as indicators for differentiating Acinetobacter species.[Abstract] [Full Text] [Related] [New Search]