These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication and characterization of patterned immobilization of quantum dots on metallic nano-gratings.
    Author: Hoa XD, Martin M, Jimenez A, Beauvais J, Charette P, Kirk A, Tabrizian M.
    Journal: Biosens Bioelectron; 2008 Dec 01; 24(4):976-81. PubMed ID: 18790627.
    Abstract:
    Surfaces featuring nano-structures and biochemical patterns are increasingly developed as novel and superior substrates for biosensors and assays. Metallic periodic nano-structures have been studied for their unique optical properties and in particular their ability to support surface plasmon waves. Here we present a new nano-structuring approach based on gentle metal lift-off process coupled with self-assembled surface chemistry for the fabrication of a zeroth-order 400nm period metallic grating with differentiated surface chemistries on the mesas and troughs. The approach, using terminated self-assembled monolayers, creates versatile functionalized substrates allowing the precise deposition of complex biomolecular structures. We use this technique to perform the guided deposition of a three-dimensional polyelectrolyte multilayer structure and the patterned adsorption of quantum dots. Finally, we demonstrate that scanning near-field optical microscopy, used in conjuncture with atomic force microscopy and scanning electron microscopy, is an ideal tool for the characterization of this nano-structured surface as it provides a complete chemical, topographical and optical image of the surface. This ability to pattern and locally measure the surface properties is likely to have an important impact on the design of novel and optimized biointerfaces and transducers for biosensors.
    [Abstract] [Full Text] [Related] [New Search]