These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selenium species in selenium-enriched and drought-exposed potatoes. Author: Cuderman P, Kreft I, Germ M, Kovacevic M, Stibilj V. Journal: J Agric Food Chem; 2008 Oct 08; 56(19):9114-20. PubMed ID: 18795781. Abstract: The aim of this work was to study selenium (Se) speciation in the potato ( Solanum tuberosum L.) cultivar Desiree, enriched in Se by foliar spraying with a water solution containing 10 mg of Se/L in the form of sodium selenate. Four combinations of treatments were used: well-watered plants with and without Se foliar spraying and drought-exposed plants with and without Se foliar spraying. Water-soluble Se compounds were extracted from potato tubers by water or enzymatic hydrolysis with the enzyme protease XIV, amylase, or a combination of protease XIV and amylase. Extraction was performed using incubation at a constant temperature and stirring (37 degrees C at 200 rpm) or by ultrasound-assisted extraction (300 W), using different extraction times. Separation of soluble Se species (SeCys2, SeMet, SeMeSeCys, selenite, and selenate) was achieved by ion-exchange chromatography, and detection was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that the concentration of selenate extracted was independent of the enzymatic extraction technique (approximately 98 ng/g for drought-exposed and 308 ng/g for well-watered potato tubers), whereas the extraction yield of SeMet changed with the protocol used (10-36%). Selenate and SeMet were the main soluble Se species (representing 51-68% of total Se) in potato tubers, regardless of the growth conditions.[Abstract] [Full Text] [Related] [New Search]