These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence. Author: Chen J, Toptygin D, Brand L, King J. Journal: Biochemistry; 2008 Oct 07; 47(40):10705-21. PubMed ID: 18795792. Abstract: Human gammaD-crystallin (HgammaD-Crys) is a two-domain, beta-sheet eye lens protein found in the lens nucleus. Its long-term solubility and stability are important to maintain lens transparency throughout life. HgammaD-Crys has four highly conserved buried tryptophans (Trps), with two in each of the homologous beta-sheet domains. In situ, these Trps will be absorbing ambient UV radiation that reaches the lens. The dispersal of the excited-state energy to avoid covalent damage is likely to be physiologically relevant for the lens crystallins. Trp fluorescence is efficiently quenched in native HgammaD-Crys. Previous steady-state fluorescence measurements provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain [Chen, J., et al. (2006) Biochemistry 45, 11552-11563]. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations indicated that the fluorescence of Trp68 and Trp156 is quenched by fast electron transfer to the amide backbone. Here we report additional information obtained using time-resolved fluorescence spectroscopy. In the single-Trp-containing proteins (Trp42-only, Trp68-only, Trp130-only, and Trp156-only), the highly quenched Trp68 and Trp156 have very short lifetimes, tau approximately 0.1 ns, whereas the moderately fluorescent Trp42 and Trp130 have longer lifetimes, tau approximately 3 ns. In the presence of the energy acceptor (Trp68 or Trp156), the lifetime of the energy donor (Trp42 or Trp130) decreased from approximately 3 to approximately 1 ns. The intradomain energy transfer efficiency is 56% in the N-terminal domain and is 71% in the C-terminal domain. The experimental values of energy transfer efficiency are in good agreement with those calculated theoretically. The absence of a time-dependent red shift in the time-resolved emission spectra of Trp130 proves that its local environment is very rigid. Time-resolved fluorescence anisotropy measurements with the single-Trp-containing proteins, Trp42-only and Trp130-only, indicate that the protein rotates as a rigid body and no segmental motion is detected. A combination of energy transfer with electron transfer results in short excited-state lifetimes of all Trps, which, together with the high rigidity of the protein matrix around Trps, could protect HgammaD-Crys from excited-state reactions causing permanent covalent damage.[Abstract] [Full Text] [Related] [New Search]