These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polymorphisms of homocysteine metabolism are associated with intracranial aneurysms.
    Author: Semmler A, Linnebank M, Krex D, Götz A, Moskau S, Ziegler A, Simon M.
    Journal: Cerebrovasc Dis; 2008; 26(4):425-9. PubMed ID: 18799873.
    Abstract:
    BACKGROUND: Impaired homocysteine metabolism is associated with a number of vasculopathies including extracranial aneurysms. We analyzed the possible association of nine genetic variants of homocysteine metabolism with the occurrence of intracranial aneurysms. METHODS: Caucasian patients (n = 255) treated at two German hospitals for intracranial aneurysms and local controls (n = 348) were genotyped for the following polymorphisms: methionine synthase (MTR) c.2756A-->G, methylenetetrahydrofolate reductase (MTHFR) c.677C-->T, MTHFR c.1298A-->C, cystathionine beta-synthase (CBS) c.844_855ins68, CBS c.833T-->C, dihydrofolate reductase (DHFR) c.594 + 59del19bp, glutathione S-transferase Omega-1 (GSTO1) c.428C-->A, reduced folate carrier 1 (RFC1) c.80G-->A and transcobalamin 2 (Tc2) c.776C-->G. RESULTS: The G-allele of the missense polymorphism Tc2 c.777C-->G was found to be underrepresented in patients, suggesting that this variant may protect from the formation of cerebral aneurysms [odds ratio per two risk alleles (OR) 0.48; 95% confidence interval (CI) 0.30-0.77; p = 0.002]. We obtained borderline results for the G-allele of RFC1 c.80G-->A (OR 1.64; 95% CI 1.01-2.65; p = 0.051) and the insertion allele of DHFR c.594 + 59del19bp (OR 1.61; 95% CI 1.00-2.60; p = 0.059), which were found to be overrepresented in patients. CONCLUSION: Polymorphisms of homocysteine metabolism are possible risk factors for the formation of intracranial aneurysms.
    [Abstract] [Full Text] [Related] [New Search]