These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Only a subset of phosphoantigen-responsive gamma9delta2 T cells mediate protective tuberculosis immunity. Author: Spencer CT, Abate G, Blazevic A, Hoft DF. Journal: J Immunol; 2008 Oct 01; 181(7):4471-84. PubMed ID: 18802050. Abstract: Mycobacterium tuberculosis and Mycobacterium bovis bacillus Calmette-Guérin (BCG) induce potent expansions of human memory Vgamma(9)(+)Vdelta(2)(+) T cells capable of IFN-gamma production, cytolytic activity, and mycobacterial growth inhibition. Certain phosphoantigens expressed by mycobacteria can stimulate gamma(9)delta(2) T cell expansions, suggesting that purified or synthetic forms of these phosphoantigens may be useful alone or as components of new vaccines or immunotherapeutics. However, we show that while mycobacteria-activated gamma(9)delta(2) T cells potently inhibit intracellular mycobacterial growth, phosphoantigen-activated gamma(9)delta(2) T cells fail to inhibit mycobacteria, although both develop similar effector cytokine and cytolytic functional capacities. gamma(9)delta(2) T cells receiving TLR-mediated costimulation during phosphoantigen activation also failed to inhibit mycobacterial growth. We hypothesized that mycobacteria express Ags, other than the previously identified phosphoantigens, that induce protective subsets of gamma(9)delta(2) T cells. Testing this hypothesis, we compared the TCR sequence diversity of gamma(9)delta(2) T cells expanded with BCG-infected vs phosphoantigen-treated dendritic cells. BCG-stimulated gamma(9)delta(2) T cells displayed a more restricted TCR diversity than phosphoantigen-activated gamma(9)delta(2) T cells. In addition, only a subset of phosphoantigen-activated gamma(9)delta(2) T cells functionally responded to mycobacteria-infected dendritic cells. Furthermore, differential inhibitory functions of BCG- and phosphoantigen-activated gamma(9)delta(2) T cells were confirmed at the clonal level and were not due to differences in TCR avidity. Our results demonstrate that BCG infection can activate and expand protective subsets of phosphoantigen-responsive gamma(9)delta(2) T cells, and provide the first indication that gamma(9)delta(2) T cells can develop pathogen specificity similar to alphabeta T cells. Specific targeting of protective gamma(9)delta(2) T cell subsets will be important for future tuberculosis vaccines.[Abstract] [Full Text] [Related] [New Search]