These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient telomerase inhibition in human non-small cell lung cancer cells by liposomal delivery of 2'-O-methyl-RNA. Author: Beisner J, Dong M, Taetz S, Piotrowska K, Kleideiter E, Friedel G, Schaefer U, Lehr CM, Klotz U, Mürdter TE. Journal: J Pharm Sci; 2009 May; 98(5):1765-74. PubMed ID: 18803262. Abstract: The antisense oligonucleotide 2'-O-methyl-RNA is a selective telomerase inhibitor targeting the telomerase RNA component and represents a potential candidate for anticancer therapy. The poor cellular uptake of 2'-O-methyl-RNA is a limiting factor that may contribute to the lack of functional efficacy. To improve delivery of 2'-O-methyl-RNA and consequently antitumoral efficiency in human lung cancer cells, we have investigated several transfection reagents. The transfection reagents DOTAP, MegaFectin 60, SuperFect, FuGENE 6 and MATra-A were tested for intracellular delivery. A FAM-labeled 2'-O-methyl-RNA was used to assess the intracellular distribution by confocal laser scanning microscopy in A549 human non-small cell lung cancer cells. Telomerase activity was measured using the telomeric repeat amplification protocol. Cell viability after transfection was quantified by the MTT assay. All transfection reagents enhanced 2'-O-methyl-RNA uptake in A549 cells but the cationic lipid reagents DOTAP and MegaFectin 60 were most efficient in the delivery of 2'-O-methyl-RNA resulting in telomerase inhibition. Among both DOTAP exhibited the lowest cytotoxicity. Our experiments show that DOTAP is the most suitable transfection reagent for the delivery of 2'-O-methyl-RNA in human lung cancer cells according to its relatively low cytotoxicity and its ability to promote efficient uptake leading to the inhibition of telomerase.[Abstract] [Full Text] [Related] [New Search]