These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Single-molecule fluorescence resonance energy transfer assays reveal heterogeneous folding ensembles in a simple RNA stem-loop. Author: Gell C, Sabir T, Westwood J, Rashid A, Smith DA, Harris SA, Stockley PG. Journal: J Mol Biol; 2008 Dec 05; 384(1):264-78. PubMed ID: 18805425. Abstract: We have examined the folding ensembles present in solution for a series of RNA oligonucleotides that encompass the replicase translational operator stem-loop of the RNA bacteriophage MS2. Single-molecule (SM) fluorescence assays suggest that these RNAs exist in solution as ensembles of differentially base-paired/base-stacked states at equilibrium. There are two distinct ensembles for the wild-type sequence, implying the existence of a significant free energy barrier between "folded" and "unfolded" ensembles. Experiments with sequence variants are consistent with an unfolding mechanism in which interruptions to base-paired duplexes, in this example by the single-stranded loop and a single-base bulge in the base-paired stem, as well as the free ends, act as nucleation points for unfolding. The switch between folded and unfolded ensembles is consistent with a transition that occurs when all base-pairing and/or base-stacking interactions that would orientate the legs of the RNA stem are broken. Strikingly, a U-to-C replacement of a residue in the loop, which creates a high-affinity form of the operator for coat protein binding, results in dramatically different (un)folding behaviour, revealing distinct subpopulations that are either stabilised or destabilised with respect to the wild-type sequence. This result suggests additional reasons for selection against the C-variant stem-loop in vivo and provides an explanation for the increased affinity.[Abstract] [Full Text] [Related] [New Search]