These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of CYP epoxygenases in A2A AR-mediated relaxation using A2A AR-null and wild-type mice.
    Author: Nayeem MA, Poloyac SM, Falck JR, Zeldin DC, Ledent C, Ponnoth DS, Ansari HR, Mustafa SJ.
    Journal: Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H2068-78. PubMed ID: 18805895.
    Abstract:
    We hypothesized that A2A adenosine receptor (A2A AR) activation causes vasorelaxation through cytochrome P-450 (CYP) epoxygenases and endothelium-derived hyperpolarizing factors, whereas lack of A2A AR activation promotes vasoconstriction through Cyp4a in the mouse aorta. Adenosine 5'-N-ethylcarboxamide (NECA; 10(-6) M), an adenosine analog, caused relaxation in wild-type A2A AR (A2A AR+/+; +33.99 +/- 4.70%, P < 0.05) versus contraction in A2A AR knockout (A2A AR(-/-); -27.52 +/- 4.11%) mouse aortae. An A2A AR-specific antagonist (SCH-58261; 1 microM) changed the NECA (10(-6) M) relaxation response to contraction (-35.82 +/- 4.69%, P < 0.05) in A2A AR+/+ aortae, whereas no effect was noted in A2A AR(-/-) aortae. Significant contraction was seen in the absence of the endothelium in A2A AR+/+ (-2.58 +/- 2.25%) aortae compared with endothelium-intact aortae. An endothelial nitric oxide synthase inhibitor (N-nitro-L-arginine methyl ester; 100 microM) and a cyclooxygenase inhibitor (indomethacin; 10 microM) failed to block NECA-induced relaxation in A2A AR+/+ aortae. A selective inhibitor of CYP epoxygenases (methylsulfonyl-propargyloxyphenylhexanamide; 10 microM) changed NECA-mediated relaxation (-22.74 +/- 5.11% at 10(-6) M) and CGS-21680-mediated relaxation (-18.54 +/- 6.06% at 10(-6) M) to contraction in A2A AR+/+ aortae, whereas no response was noted in A2A AR(-/-) aortae. Furthermore, an epoxyeicosatrienoic acid (EET) antagonist [14,15-epoxyeicosa-5(Z)-enoic acid; 10 microM] was able to block NECA-induced relaxation in A2A AR+/+ aortae, whereas omega-hydroxylase inhibitors (10 microM dibromo-dodecenyl-methylsulfimide and 10 microM HET-0016) changed contraction into relaxation in A2A AR(-/-) aorta. Cyp2c29 protein was upregulated in A2A AR+/+ aortae, whereas Cyp4a was upregulated in A2A AR(-/-) aortae. Higher levels of dihydroxyeicosatrienoic acids (DHETs; 14,15-DHET, 11,12-DHET, and 8,9-DHET, P < 0.05) were found in A2A AR+/+ versus A2A AR(-/-) aortae. EET levels were not significantly different between A2A AR+/+ and A2A AR(-/-) aortae. It is concluded that CYP epoxygenases play an important role in A2A AR-mediated relaxation, and the deletion of the A2A AR leads to contraction through Cyp4a.
    [Abstract] [Full Text] [Related] [New Search]