These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1.
    Author: Kurita S, Watanabe Y, Gunji E, Ohashi K, Mizuno K.
    Journal: J Biol Chem; 2008 Nov 21; 283(47):32542-52. PubMed ID: 18809681.
    Abstract:
    Slingshot-1 (SSH1), a member of a dual-specificity protein phosphatase family, regulates actin dynamics by dephosphorylating and reactivating cofilin, an actin-depolymerizing factor. SSH1 has the SSH family-specific, N-terminal, noncatalytic (SSH-N) domain, consisting of the A and B subdomains. SSH1 is activated by binding to actin filaments. In this study, we examined the mechanisms of SSH1 substrate recognition of phospho-cofilin (P-cofilin) and SSH1 activation by F-actin. We found that P-cofilin binds to a phosphatase-inactive mutant, SSH1(CS), in which the catalytic Cys-393 is replaced by Ser. Using a series of deletion mutants, we provided evidence that both the phosphatase (P) domain and the adjacent B domain are indispensable for P-cofilin binding of SSH1(CS) and cofilin-phosphatase activity of SSH1. In contrast, the A domain is required for the F-actin-mediated activation of SSH1, but not for P-cofilin binding or basal cofilin-phosphatase activity. The P domain alone is sufficient for the phosphatase activity toward p-nitrophenyl phosphate (pNPP), indicating that the SSH-N domain is not essential for the basal phosphatase activity of SSH1. Addition of F-actin increased the cofilin-phosphatase activity of SSH1 more than 1200-fold, but the pNPP-phosphatase activity only 2.2-fold, which suggests that F-actin principally affects the cofilin-specific phosphatase activity of SSH1. When expressed in cultured cells, SSH1, but not its mutant deleted of SSH-N, accumulated in the rear of the lamellipodium. Together, these findings suggest that the conserved SSH-N domain plays critical roles in P-cofilin recognition, F-actin-mediated activation, and subcellular localization of SSH1.
    [Abstract] [Full Text] [Related] [New Search]