These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bis(alpha-furancarboxylato)oxovanadium(IV) prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. Author: Zuo YQ, Liu WP, Niu YF, Tian CF, Xie MJ, Chen XZ, Li L. Journal: J Pharm Pharmacol; 2008 Oct; 60(10):1335-40. PubMed ID: 18812026. Abstract: Previous studies showed that bis(alpha-furancarboxylato)oxovanadium(IV) (BFOV), an orally active anti-diabetic organic vanadium complex, could improve insulin resistance in animals with type 2 diabetes. The present study has been carried out to evaluate the effects of BFOV on insulin-resistant glucose metabolism using dexamethasone-treated 3T3-L1 adipocytes as an in-vitro model of insulin resistance. The results showed that BFOV, similar to vanadyl sulfate and rosiglitazone, caused a concentration-dependent increase in glucose consumption by insulin-resistant adipocytes. Moreover, BFOV enhanced the action of insulin and completely prevented the development of insulin resistance induced by dexamethasone, leading to glucose consumption equal to that by normal cells. In addition, dexamethasone reduced the mRNA expression of insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4) in 3T3-L1 adipocytes, while BFOV normalized the expression of IRS-1 and GLUT4. These findings suggest that BFOV prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes by enhancing expression of IRS-1 and GLUT4 mRNA.[Abstract] [Full Text] [Related] [New Search]