These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversal of P-glycoprotein-mediated multidrug resistance in human sarcoma MES-SA/Dx-5 cells by nonsteroidal anti-inflammatory drugs.
    Author: Angelini A, Iezzi M, Di Febbo C, Di Ilio C, Cuccurullo F, Porreca E.
    Journal: Oncol Rep; 2008 Oct; 20(4):731-5. PubMed ID: 18813811.
    Abstract:
    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is one of the major reasons for the failure of cancer therapy. Several chemosensitizers are able to reverse in vitro MDR by inhibiting P-gp, although high toxicity limits their clinical application. In this study, we aimed to investigate the in vitro effectiveness of four common non-steroidal anti-inflammatory drugs (NSAIDs) such as Curcumin (Cur), Sulindac (Sul), Ibuprofen (Ibu) and NS-398 (NS) to inhibit P-gp activity at clinically achievable doses and to evaluate their potential use as sensitizers in anti-cancer chemotherapy. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx-5) expressing high levels of P-gp, were treated with different doxo concentrations in the presence or absence of NSAIDs. Cellular accumulation of doxo, cytotoxicity and apoptosis induction were measured in comparison with Verapamil, a specific P-gp inhibitor, used as a reference molecule. We found that Ibu, Cur and NS-398 enhanced significantly doxo retention, cytotoxicity and apoptosis on resistant MES-SA/Doxo-5 cells when compared with doxo alone. In contrast, no significant changes were found in resistant cells treated with Sul-doxo combinations. Our results demonstrate that Ibu, Cur and NS-398 below their therapeutic plasma concentrations were able to overcome P-gp-mediated MDR in MES-SA/Dx-5 cells. These findings provide the rationale for clinical studies of NSAIDs and/or derivatives as a new potential generation of chemosensitizers to improve effectiveness of the anti-cancer drugs in the treatment of human cancer.
    [Abstract] [Full Text] [Related] [New Search]