These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cooperativity between the halogen bond and the hydrogen bond in H3N...XY...HF complexes (X, Y=F, Cl, Br). Author: Li Q, Lin Q, Li W, Cheng J, Gong B, Sun J. Journal: Chemphyschem; 2008 Oct 24; 9(15):2265-9. PubMed ID: 18814160. Abstract: Ab initio calculations are used to provide information on H(3)N...XY...HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H(3)N...Br(2)-HF, H(3)N...Cl(2)...HF, H(3)N...BrCl...HF, H(3)N...BrF...HF, and H(3)N...ClF...HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6-311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many-body interaction energies, and cooperativity factors. The cooperative energy ranges from -1.45 to -4.64 kcal mol(-1), the three-body interaction energy from -2.17 to -6.71 kcal mol(-1), and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.[Abstract] [Full Text] [Related] [New Search]