These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations.
    Author: Valcu CM, Lalanne C, Plomion C, Schlink K.
    Journal: Proteomics; 2008 Oct; 8(20):4287-302. PubMed ID: 18814337.
    Abstract:
    Although tree species typically exhibit low genetic differentiation between populations, ecotypes adapted to different environmental conditions can vary in their capacity to withstand and recover from environmental stresses like heat stress. Two month old seedlings of a Picea abies ecotype adapted to high elevation showed lower level of thermotolerance and higher level of tolerance to oxidative stress relative to a low elevation ecotype. Protein expression patterns following exposure to severe heat stress of the two ecotypes were compared by means of 2-DE. Several proteins exhibiting ecotype and tissue specific expression were identified by MS/MS. Among them, small heat shock proteins of the HSP 20 family and proteins involved in protection from oxidative stress displayed qualitative and quantitative differences in expression between the ecotypes correlated with the observed phenotypic differences. On the basis of these results, it can be speculated that the observed interpopulation polymorphism of protein regulation in response to heat stress could underlie their different capacities to withstand and recover from heat stress. These local adaptations are potentially relevant for the species adaptation to the conditions predicted by the current models for climate change.
    [Abstract] [Full Text] [Related] [New Search]