These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation. Author: Hovsepyan A, Bonzongo JC. Journal: J Hazard Mater; 2009 May 15; 164(1):73-80. PubMed ID: 18814960. Abstract: The potential of readily available and non-hazardous waste material, aluminum drinking water treatment residuals (Al-WTRs), to efficiently sorb and immobilize mercury (Hg) from aqueous solutions was evaluated. Al-WTR samples with average specific surface area of 48m(2)/g and internal micropore surface area of 120m(2)/g were used in a series of batch sorption experiments. Obtained sorption isotherms indicated a strong affinity of Hg for Al-WTRs. Using the Langmuir adsorption model, a relatively high maximum sorption capacity of 79mg Hg/g Al-WTRs was determined. Sorption kinetic data was best fit to a pseudo-first-order model, while the use of the Weber-Morris and Bangham models suggested that the intraparticle diffusion could be the rate-limiting step. Also, Al-WTRs effectively immoblized Hg in the pH range of 3-8. The results from these short-term experiments demonstrate that Al-WTRs can be effectively used to remove Hg from aqueous solutions. This ability points to the potential of Al-WTRs as a sorbent in soil remediation techniques based on Hg-immobilization.[Abstract] [Full Text] [Related] [New Search]