These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Author: Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL. Journal: Endocrinology; 2009 Feb; 150(2):580-91. PubMed ID: 18818290. Abstract: Insulin resistance and type 2 diabetes mellitus are associated with impaired postprandial secretion of glucagon-like peptide-1 (GLP-1), a potent insulinotropic hormone. The direct effects of insulin and insulin resistance on the L cell are unknown. We therefore hypothesized that the L cell is responsive to insulin and that insulin resistance impairs GLP-1 secretion. The effects of insulin and insulin resistance were examined in well-characterized L cell models: murine GLUTag, human NCI-H716, and fetal rat intestinal cells. MKR mice, a model of chronic hyperinsulinemia, were used to assess the function of the L cell in vivo. In all cells, insulin activated the phosphatidylinositol 3 kinase-Akt and MAPK kinase (MEK)-ERK1/2 pathways and stimulated GLP-1 secretion by up to 275 +/- 58%. Insulin resistance was induced by 24 h pretreatment with 10(-7) m insulin, causing a marked reduction in activation of Akt and ERK1/2. Furthermore, both insulin-induced GLP-1 release and secretion in response to glucose-dependent insulinotropic peptide and phorbol-12-myristate-13-acetate were significantly attenuated. Whereas inhibition of phosphatidylinositol 3 kinase with LY294002 potentiated insulin-induced GLP-1 release, secretion was abrogated by inhibiting the MEK-ERK1/2 pathway with PD98059 or by overexpression of a kinase-dead MEK1-ERK2 fusion protein. Compared with controls, MKR mice were insulin resistant and displayed significantly higher fasting plasma insulin levels. Furthermore, they had significantly higher basal GLP-1 levels but displayed impaired GLP-1 secretion after an oral glucose challenge. These findings indicate that the intestinal L cell is responsive to insulin and that insulin resistance in vitro and in vivo is associated with impaired GLP-1 secretion.[Abstract] [Full Text] [Related] [New Search]