These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 1,4,5-Inositol trisphosphate-operated intracellular Ca(2+) stores and angiotensin-II/endothelin-1 signaling pathway are functional in human embryonic stem cell-derived cardiomyocytes.
    Author: Sedan O, Dolnikov K, Zeevi-Levin N, Leibovich N, Amit M, Itskovitz-Eldor J, Binah O.
    Journal: Stem Cells; 2008 Dec; 26(12):3130-8. PubMed ID: 18818435.
    Abstract:
    On the basis of previous findings suggesting that in human embryonic stem cell-derived cardiomyocytes (hESC-CM) the sarcoplasmic reticulum Ca(2+)-induced release of calcium machinery is either absent or immature, in the present study we tested the hypothesis that hESC-CM contain fully functional 1,4,5-inositol trisphosphate (1,4,5-IP(3))-operated intracellular Ca(2+) ([Ca(2+)](i)) stores that can be mobilized upon appropriate physiological stimuli. To test this hypothesis we investigated the effects of angiotensin-II (AT-II) and endothelin-1 (ET-1), which activate the 1,4,5-IP(3) pathway, on [Ca(2+)](i) transients and contractions in beating clusters of hESC-CM. Our major findings were that in paced hESC-CM both AT-II and ET-1 (10(-9) to 10(-7) M) increased the contraction amplitude and the maximal rates of contraction and relaxation. In addition, AT-II (10(-9) to 10(-7) M) increased the [Ca(2+)](i) transient amplitude. The involvement of 1,4,5-IP(3)-dependent intracellular Ca(2+) release in the inotropic effect of AT-II was supported by the findings that (a) hESC-CM express AT-II, ET-1, and 1,4,5-IP(3) receptors determined by immunofluorescence staining, and (b) the effects of AT-II were blocked by 2 microM 2-aminoethoxyphenyl borate (a 1,4,5-IP(3) receptor blocker) and U73122 (a phospholipase C blocker). In conclusion, these findings demonstrate for the first time that hESC-CM exhibit functional AT-II and ET-1 signaling pathways, as well as 1,4,5-IP(3)-operated releasable Ca(2+) stores.
    [Abstract] [Full Text] [Related] [New Search]