These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identifying differentially expressed subnetworks with MMG.
    Author: Noirel J, Sanguinetti G, Wright PC.
    Journal: Bioinformatics; 2008 Dec 01; 24(23):2792-3. PubMed ID: 18819939.
    Abstract:
    BACKGROUND: Mixture model on graphs (MMG) is a probabilistic model that integrates network topology with (gene, protein) expression data to predict the regulation state of genes and proteins. It is remarkably robust to missing data, a feature particularly important for its use in quantitative proteomics. A new implementation in C and interfaced with R makes MMG extremely fast and easy to use and to extend. AVAILABILITY: The original implementation (Matlab) is still available from http://www.dcs.shef.ac.uk/~guido/; the new implementation is available from http://wrightlab.group.shef.ac.uk/people_noirel.htm, from CRAN, and has been submitted to BioConductor, http://www.bioconductor.org/.
    [Abstract] [Full Text] [Related] [New Search]