These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Laforin negatively regulates cell cycle progression through glycogen synthase kinase 3beta-dependent mechanisms.
    Author: Liu R, Wang L, Chen C, Liu Y, Zhou P, Wang Y, Wang X, Turnbull J, Minassian BA, Liu Y, Zheng P.
    Journal: Mol Cell Biol; 2008 Dec; 28(23):7236-44. PubMed ID: 18824542.
    Abstract:
    Glycogen synthase kinase 3beta (GSK-3beta) represses cell cycle progression by directly phosphorylating cyclin D1 and indirectly regulating cyclin D1 transcription by inhibiting Wnt signaling. Recently, we reported that the Epm2a-encoded laforin is a GSK-3beta phosphatase and a tumor suppressor. The cellular mechanism for its tumor suppression remains unknown. Using ex vivo thymocytes and primary embryonic fibroblasts from Epm2a(-/-) mice, we show here a general function of laforin in the cell cycle regulation and repression of cyclin D1 expression. Moreover, targeted mutation of Epm2a increased the phosphorylation of Ser9 on GSK-3beta while having no effect on the phosphorylation of Ser21 on GSK-3alpha. In the GSK-3beta(+/+) but not the GSK-3beta(-/-) cells, Epm2a small interfering RNA significantly enhanced cell growth. Consistent with an increased level of cyclin D1, the phosphorylation of retinoblastoma protein (Rb) and the levels of Rb-E2F-regulated genes cyclin A, cyclin E, MCM3, and PCNA are also elevated. Inhibitors of GSK-3beta selectively increased the cell growth of Epm2a(+/+) but not of Epm2a(-/-) cells. Taken together, our data demonstrate that laforin is a selective phosphatase for GSK-3beta and regulates cell cycle progression by GSK-3beta-dependent mechanisms. These data provide a cellular basis for the tumor suppression activity of laforin.
    [Abstract] [Full Text] [Related] [New Search]