These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ApoG2 inhibits antiapoptotic Bcl-2 family proteins and induces mitochondria-dependent apoptosis in human lymphoma U937 cells. Author: Sun J, Li ZM, Hu ZY, Lin XB, Zhou NN, Xian LJ, Yang DJ, Jiang WQ. Journal: Anticancer Drugs; 2008 Nov; 19(10):967-74. PubMed ID: 18827561. Abstract: Lymphoma is one of the most common types of hematological malignancies and proteins from the Bcl-2 family are highly expressed in human lymphomas. Apogossypolone (ApoG2), the most potent gossypol derivative, has been classified as a novel small-molecule inhibitor of antiapoptotic Bcl-2 family proteins. Here, we assessed the in-vitro cytotoxicity of ApoG2 on human U937 lymphoma cells, and explored the underlying intracellular molecular mechanisms of ApoG2. Using the WST-8 assay, we found that ApoG2 inhibited growth of U937 cells in a dose-dependent and time-dependent manner, and the IC50 values were 30.08, 14.81, and 9.26 mumol/l for 24, 48, and 72 h treatments, respectively. ApoG2 also induced apoptosis in U937 cells, as noted through changes in morphological characteristics, including cellular internucleosomal DNA fragmentation and the appearance of a sub-G1 apoptotic peak. Treatment with ApoG2 downregulated Bcl-xL and Mcl-1 protein expression and blocked the binding of Bcl-2 with Bax protein. Furthermore, ApoG2 led to an abundant release of cytochrome c from mitochondria and a five-fold increase in the activity of caspase-3 and caspase-9. Taken together, our results suggest that ApoG2 could effectively suppress the growth of human lymphoma cell line U937 through the inhibition of the antiapoptotic Bcl-2 family proteins and the induction of mitochondria-dependent apoptotic cell death.[Abstract] [Full Text] [Related] [New Search]