These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of fumonisins B(1), B(2) and B(3) in corn-based baby food by pressurized liquid extraction and liquid chromatography/tandem mass spectrometry.
    Author: D'Arco G, Fernández-Franzón M, Font G, Damiani P, Mañes J.
    Journal: J Chromatogr A; 2008 Oct 31; 1209(1-2):188-94. PubMed ID: 18829034.
    Abstract:
    A sensitive and reliable method using pressurized liquid extraction (PLE) and liquid chromatography (LC)/electrospray ionization (ESI) tandem mass spectrometry with a triple quadrupole (QqQ) analyzer has been developed for the analysis of fumonisin B(1) (FB(1)), fumonisin B(2) (FB(2)) and fumonisin B(3) (FB(3)) in corn-based baby foods. Influence of several extraction parameters that affect PLE efficiency such as temperature, pressure, solvent extraction, number of cycles and dispersant/clean-up agents were studied. The selected PLE operating method was: 3g of sample was packed into 11 ml stainless-steel cell and fumonisins were extracted with methanol at 40 degrees C, 34 atm in one cycle of 5 min at 60% flush. The analytes were ionized in ESI operating with positive ion mode and identified by selecting two monitoring transitions, permitting quantification and confirmation in a single injection. Recoveries ranged from 68% to 83% at fortification levels of 200 microg kg(-1) with relative standard deviation (RSD) from 4% to 12%. The limits of quantification were from 2 microg kg(-1) for FB(1) and FB(2), and 5 microg kg(-1) for FB(3), which are below the maximum residue level established by the European Union legislation in infant formulas. The proposed method was successfully applied to the analysis of twenty seven samples of baby food products collected from different markets, and one positive sample with a content of 15.9 microg kg(-1) for FB(1), 9.2 microg kg(-1)for FB(2) and 5.8 microg kg(-1) for FB(3) was obtained. Given the simplicity and potential of the proposed procedure, its application for safety control is recommended.
    [Abstract] [Full Text] [Related] [New Search]