These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Model analysis of local oxygen delivery with liposome-encapsulated hemoglobin. Author: Matsumoto T, Mano K, Ueha R, Naito H, Tanaka M. Journal: Med Eng Phys; 2009 Mar; 31(2):173-81. PubMed ID: 18829372. Abstract: Liposome-encapsulated hemoglobins (LHs) are comparable to red blood cells (RBCs) in terms of oxygen (O(2))-carrying capacity. The smaller particle size of LHs than of platelets allows their homogeneous dispersion in circulating plasma. In this study, we evaluated the effect of LH transfusion on arterial O(2) delivery through vascular trees by simulation. A mathematical model was established on the basis of the coronary arterial anatomy, the conservation of flow and RBC flux, and Poiseuille's law. The Fåhraeus-Lindqvist, Fåhraeus, and phase separation effects were considered in the model. By assuming steady perfusion, the arterial flow and O(2) delivery were calculated for five model trees undergoing the isovolumic replacement of RBCs (0.3 mg hemoglobin (Hb)/mL) with LHs (0.2 mg Hb/mL) or a plasma volume expander (PVE). The RBC-LH exchange increased both the total flow and the total O(2) flux but had almost no effect on the relative distribution of O(2) flux. In contrast, the RBC-PVE exchange decreased the total O(2) flux and increased the proportion of regions receiving a relatively low O(2) supply. Thus, LH transfusion may compensate for an enhanced bias in RBC-associated O(2) flux under hemodilution and is expected to be beneficial for both total and local O(2) delivery.[Abstract] [Full Text] [Related] [New Search]