These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutathione and cysteine biosynthesis in two varieties of Abelmoschus esculentus in response to mine spoil.
    Author: Arya SK, Khalique S, Kumar S, Roy BK.
    Journal: J Environ Biol; 2008 Jan; 29(1):93-9. PubMed ID: 18831339.
    Abstract:
    The extent of accumulation of some heavy metals and glutathione and cysteine levels in the roots and aerial plant parts in two genotypically different varieties of A. esculentus (KS404 and BO2) exposed to mine spoil were investigated. Glutathione (GSH) level in both the varieties on control sites increased from basal level to 155.15 nmol g(-1) dry weight (d.wt.), almost 1.5 fold on 30 day and attained a plateau within 60 day Mine spoil exposure of both the varieties decreased glutathione 1.13 fold (89.2 nmol g(-1) dry weight) during 60 day from its basal level. GSH concentration in shoots of these varieties increased accompanying growth contrary to roots where it finally declined 2 fold. Cysteine content in control plants increased 2 fold (31.6 nmol g(-1) dry weight) on 30 day and finally declined 1.38 fold (22.35 nmol g(-1) dry weight, at 60 day). Both the varieties, when exposed to mine spoil, showed enhanced cysteine content almost 2 fold during 30 day (50.95 nmol g(-1) dry weight) but failed to increase further Forshoots in both the varieties challenged with mine spoil, cysteine maxima reached late (15.2 nmol g(-1) dry weight, at 40 day) relative to control but the levels declined subsequently (11.85 nmol g(-l) dry weight). Contrary to GSH, cysteine content in roots of both the varieties responded positively to mine spoil as apparent from the 2.23 fold increase during 30 d than basal level although it lowered to a level of 12.85 nmol g(-1) dry weight finally at 60 day. Both the varieties accumulated almost maximum level of selected cations (Fe > Mn> Zn> Cu > Ni) during 30 day, but BO2 variety was significantly superior in this regard. Invariably high accumulation of such cations in roots over shoots indicated accumulation, retention or restricted translocation from root to shoot. The metal share of the edible part was just 6% of the plant load. Thus, present work reflects a genotypic differences in metal accumulation and that affected the major non-enzymatic traits or synthesis of sulthydryl compounds as well. The present results also indicate that metal tolerance is in part associated with anti-oxidant system activity.
    [Abstract] [Full Text] [Related] [New Search]