These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses.
    Author: Kerr AM, Reisinger E, Jonas P.
    Journal: Proc Natl Acad Sci U S A; 2008 Oct 07; 105(40):15581-6. PubMed ID: 18832148.
    Abstract:
    Previous studies revealed that synaptotagmin 1 is the major Ca(2+) sensor for fast synchronous transmitter release at excitatory synapses. However, the molecular identity of the Ca(2+) sensor at hippocampal inhibitory synapses has not been determined. To address the functional role of synaptotagmin 1 at identified inhibitory terminals, we made paired recordings from synaptically connected basket cells (BCs) and granule cells (GCs) in the dentate gyrus in organotypic slice cultures from wild-type and synaptotagmin 1-deficient mice. As expected, genetic elimination of synaptotagmin 1 abolished synchronous transmitter release at excitatory GC-BC synapses. However, synchronous release at inhibitory BC-GC synapses was maintained. Quantitative analysis revealed that elimination of synaptotagmin 1 reduced release probability and depression but maintained the synchrony of transmitter release at BC-GC synapses. Elimination of synaptotagmin 1 also increased the frequency of both miniature excitatory postsynaptic currents (measured in BCs) and miniature inhibitory postsynaptic currents (recorded in GCs), consistent with a clamping function of synaptotagmin 1 at both excitatory and inhibitory terminals. Single-cell reverse-transcription quantitative PCR analysis revealed that single BCs coexpressed multiple synaptotagmin isoforms, including synaptotagmin 1-5, 7, and 11-13. Our results indicate that, in contrast to excitatory synapses, synaptotagmin 1 is not absolutely required for synchronous release at inhibitory BC-GC synapses. Thus, alternative fast Ca(2+) sensors contribute to synchronous release of the inhibitory transmitter GABA in cortical circuits.
    [Abstract] [Full Text] [Related] [New Search]