These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A smart nanoassembly consisting of acid-labile vinyl ether PEG-DOPE and protamine for gene delivery: preparation and in vitro transfection. Author: Xu Z, Gu W, Chen L, Gao Y, Zhang Z, Li Y. Journal: Biomacromolecules; 2008 Nov; 9(11):3119-26. PubMed ID: 18834174. Abstract: The conception of a modular designed and viruslike nonviral vector has been presented for gene delivery. Recently, we constructed a new smart nanoassembly (SNA) with multifunctional components that was composed of a condensed core of pDNA with protamine sulfate (PS) and a dioleoyl phosphatidylethanolamine (DOPE)-based lipid envelope containing poly(ethylene glycol)--vinyl ether--DOPE (PVD). SNAs with mPEG 2000 (SNAs1) or mPEG 5000 (SNAs2) loading PS/DNA were prepared by the lipid film hydration technique. The particle size was about 160 nm for SNAs1 and 240 nm for SNAs2 loading PS/DNA (10:1 w/w), and the zeta potential was about 4 mV for two SNAs. The in vitro release experiment indicated that PVD possessed a good ability for self-dePEGylation, which could result in the recovery of an excellent fusogenic capacity of DOPE at low pH. SNAs showed a higher transfection efficiency and much lower cytotoxicity than did Lipofectamine 2000 on HEK 293, HeLa, and COS-7 cells. The cellular uptake and subcellular localization demonstrated that the superior transfection efficiency of SNAs could result from the fact that the DOPE-based lipid envelope containing PVD increased PS/DNA in the cytoplasm, and protamine enhanced the nuclear delivery or overcame the nuclear membrane barrier. These results implied that the PVD-based nanoassembly loading PS/DNA could be a promising gene delivery system.[Abstract] [Full Text] [Related] [New Search]