These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of phosphatidic acid in stressed mitochondria. Author: Yurkova IL, Stuckert F, Kisel MA, Shadyro OI, Arnhold J, Huster D. Journal: Arch Biochem Biophys; 2008 Dec 01; 480(1):17-26. PubMed ID: 18835242. Abstract: Mitochondria are an important intracellular source of ROS as well as a sensitive target for oxidative damage under certain pathological conditions such as iron or copper overload. Mitochondrial membranes are rich in the tetraacyl phospholipid cardiolipin. Its integrity is important for efficient oxidative phosphorylation. Mouse liver mitochondria were subjected to oxidative stress by the Cu(2+)(Fe(2+))/H(2)O(2)/ascorbate system. Phosphatidic acid was detected in oxidized mitochondria, but not in unperturbed mitochondria. The Cu(2+)/H(2)O(2)/and (or not) ascorbate system caused the formation of phosphatidic acid and phosphatidylhydroxyacetone in cardiolipin liposomes. These products proceed via an HO*-radical induced fragmentation taking place in the polar moiety of cardiolipin. Mass spectrometry analysis of phosphatidic acid newly formed in mitochondria revealed that it has been derived from fragmentation of cardiolipin. Thus, free-radical fragmentation of cardiolipin in its polar part with the formation of phosphatidic acid is a likely mechanism that damages mitochondria under conditions of oxidative stress.[Abstract] [Full Text] [Related] [New Search]