These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ventilation scintigraphy with lipophilic cationic compounds. Author: Bhatnagar A, Sawroop K, Chopra MK, Kumar N, Jaimini A, Bhatnagar A. Journal: Nucl Med Commun; 2008 Nov; 29(11):987-93. PubMed ID: 18836377. Abstract: OBJECTIVE: On the basis of our hypothesis that lipophilic cations may be more suitable for ventilation lung scintigraphy than the conventional technetium-99m diethylenetriamine penta-acetic acid (Tc-DTPA), comparative studies were carried out. BASIC METHODS: The nebulization potential of nine routine radiopharmaceuticals was compared on medical and scintigraphy-specific nebulizers. This was followed by ventilation scintigraphy in 14 patients with chronic obstructive airway disease (n=13) or pulmonary embolism (n=1) where either 99mTc-methoxyisobutylisonitrile (n=10) or Tc-tetrofosmin (n=4) was used. Same-patient comparison with 99mTc-DTPA ventilation scan was available in six patients using the same acquisition protocol. Comparison with 99mTc-DTPA was made with respect to the nebulization rates, radioactivity delivered per unit of radioactivity available for inhalation, and regional distribution of inhaled counts. RESULTS: Lipophilic cation solutions had a significantly higher nebulization rate compared with 99mTc-DTPA using the medical nebulizer (235%, P<0.01) and 370% on scintigraphy-specific nebulizer (P<0.01). More than three times the counts of 99mTc-methoxyisobutylisonitrile or 99mTc-tetrofosmin was deposited in the body compared with Tc-DTPA aerosol per megabecquerel activity inhaled (1.5 vs. 0.4 kcounts/MBq) (P<0.001), preferentially in the lungs (75.2 vs. 65.2%), at the expense of oropharynx and stomach. Within the lungs, about 50% more counts were deposited in the outer one-third lung with lipophilic cations. Overall, therefore, more than 12 times the radioactivity deposition was achieved in the peripheral one-third of the lungs with the lipophilic cations. CONCLUSION: Ventilation lung scanning with lipophilic cations is a viable substitute of nanoparticle scintigraphy (technegas and pertechnegas, which are expensive and technically far more demanding).[Abstract] [Full Text] [Related] [New Search]