These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. Author: Masse I, Molin L, Mouchiroud L, Vanhems P, Palladino F, Billaud M, Solari F. Journal: PLoS One; 2008 Oct 06; 3(10):e3354. PubMed ID: 18836529. Abstract: The PTEN tumour suppressor encodes a phosphatase, and its daf-18 orthologue in Caenorhabditis elegans negatively regulates the insulin/IGF-1 DAF-2 receptor pathway that influences lifespan in worms and other species. In order to identify new DAF-18 regulated pathways involved in aging, we initiated a candidate RNAi feeding screen for clones that lengthen lifespan. Here, we report that smg-1 inactivation increases average lifespan in a daf-18 dependent manner. Genetic analysis is consistent with SMG-1 acting at least in part in parallel to the canonical DAF-2 receptor pathway, but converging on the transcription factor DAF-16/FOXO. SMG-1 is a serine-threonine kinase which plays a conserved role in nonsense-mediated mRNA decay (NMD) in worms and mammals. In addition, human SMG-1 has also been implicated in the p53-mediated response to genotoxic stress. The effect of smg-1 inactivation on lifespan appears to be unrelated to its NMD function, but requires the p53 tumour suppressor orthologue cep-1. Furthermore, smg-1 inactivation confers a resistance to oxidative stress in a daf-18-, daf-16- and cep-1-dependent manner. We propose that the role of SMG-1 in lifespan regulation is at least partly dependent on its function in oxidative stress resistance. Taken together, our results unveil a novel role for SMG-1 in lifespan regulation.[Abstract] [Full Text] [Related] [New Search]