These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2X4 receptors and p38 MAPK in microglia.
    Author: Gong QJ, Li YY, Xin WJ, Zang Y, Ren WJ, Wei XH, Li YY, Zhang T, Liu XG.
    Journal: Glia; 2009 Apr 15; 57(6):583-91. PubMed ID: 18837052.
    Abstract:
    Many studies have shown that adenosine triphosphate (ATP), as a neurotransmitter, is involved in plastic changes of synaptic transmission in central nervous system. In the present study, we tested whether extracellular ATP can induce long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn. The results showed the following: (1) ATP at a concentration of 0.3 mM induced spinal LTP of C-fiber-evoked field potentials, lasting for at least 5 h; (2) spinal application of 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5-triphosphate (TNP-ATP; an antagonist of P2X(1-4) receptors), but not pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; an antagonist of P2X(1,2,3,5,7) receptors), 30 min before ATP blocked ATP-induced LTP, indicating that ATP may induce spinal LTP by activation of P2X(4) receptors; (3) at 60 min after LTP induction the level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) was significantly elevated and at 180 min after LTP the number of P2X(4) receptors increased significantly; both p-p38 and P2X(4) receptors were exclusively co-located with the microglia marker, but not with neuronal or astrocyte marker; (4) spinal application of TNP-ATP but not PPADS prevented p38 activation; (5) spinal application of SB203580, a p38 MAPK inhibitor, prevented both spinal LTP and the upregulation of P2X(4) receptors. The results suggested that ATP may activate p38 MAPK by binding to intrinsic P2X(4) receptors in microglia, and subsequently enhance the expression of P2X(4) receptors, contributing to spinal LTP.
    [Abstract] [Full Text] [Related] [New Search]