These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mycotoxins and toxigenic fungi in sago starch from Papua New Guinea.
    Author: Greenhill AR, Blaney BJ, Shipton WA, Frisvad JC, Pue A, Warner JM.
    Journal: Lett Appl Microbiol; 2008 Oct; 47(4):342-7. PubMed ID: 18840154.
    Abstract:
    AIMS: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. METHODS AND RESULTS: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. CONCLUSIONS: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.
    [Abstract] [Full Text] [Related] [New Search]