These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats.
    Author: Ziomber A, Machnik A, Dahlmann A, Dietsch P, Beck FX, Wagner H, Hilgers KF, Luft FC, Eckardt KU, Titze J.
    Journal: Am J Physiol Renal Physiol; 2008 Dec; 295(6):F1752-63. PubMed ID: 18842823.
    Abstract:
    Na(+) loading without Cl(-) fails to increase blood pressure in the DOCA model. We compared the changes in the total body (TB) effective Na(+), K(+), Cl(-), and water (TBW) content as well as in intracellular (ICV) or extracellular (ECV) volume in rats receiving DOCA-NaCl, DOCA-NaHCO(3), or DOCA-KHCO(3). We divided 42 male rats into 5 groups. Group 1 was untreated, group 2 received 1% NaCl, and groups 3, 4, and 5 were treated with DOCA and received 1% NaCl, 1.44% NaHCO(3), or 1.7% KHCO(3) to drink. We measured mean arterial blood pressure (MAP) directly after 3 wk. Tissue electrolyte and water content was measured by chemical analysis. Compared with control rats, DOCA-NaCl increased MAP while DOCA-NaHCO(3) and DOCA-KHCO(3) did not. DOCA-NaCl increased TBNa(+) 26% but only moderately increased TBW. DOCA-NaHCO(3) led to similar TBNa(+) excess, while TBW and ICV, but not ECV, were increased more than in DOCA-NaCl rats. DOCA-KHCO(3) did not affect TBNa(+) or volume. At a given TB(Na(+)+K(+)) and TBW, MAP in DOCA-NaCl rats was higher than in control, DOCA-NaHCO(3), and DOCA-KHCO(3) rats, indicating that hypertension in DOCA-NaCl rats was not dependent on TB(Na(+)+K(+)) and water mass balance. Skin volume retention was hypertonic compared with serum and paralleled hypertension in DOCA-NaCl rats. These rats had higher TB(Na(+)+K(+))-to-TBW ratio in accumulated fluid than DOCA-NaHCO(3) rats. DOCA-NaCl rats also had increased intracellular Cl(-) concentrations in skeletal muscle. We conclude that excessive cellular electrolyte redistribution and/or intracellular Na(+) or Cl(-) accumulation may play an important role in the pathogenesis of salt-sensitive hypertension.
    [Abstract] [Full Text] [Related] [New Search]