These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Author: Bailey ML, Shilton BH, Brandl CJ, Litchfield DW. Journal: Biochemistry; 2008 Nov 04; 47(44):11481-9. PubMed ID: 18844375. Abstract: The catalytic domain of the peptidyl-prolyl cis/ trans isomerase Pin1 is a member of the FKBP superfold family. Within its active site are two highly conserved histidine residues, H59 and H157. Despite their sequence conservation in parvulin PPIase domains, the role of these histidine residues remains unclear. Our previous work (Behrsin et al. (2007) J. Mol. Biol. 365, 1143- 1162.) was consistent with a model where one or both histidines had critical roles in a hydrogen bonding network in the active site. Here, we test this model by looking at the effect of mutations to H59 and H157 on Pin1 function, activity, and protein stability. Using a yeast complementation assay, we show that both H59 and H157 can be mutated to non-hydrogen bonding residues and still support viability. Surprisingly, a nonfunctional H59L mutation can be rescued by a mutation of H157, to leucine. This double mutation (H59L/H157L) also had about 5-fold greater isomerase activity than the H59L mutation with a phosphorylated substrate. Structural analyses suggest that rescue of function and activity results from partial rescue of protein stability. Our findings indicate that H59 and H157 are not required for hydrogen bonding within the active site, and in contrast to the active site C113, they do not participate directly in catalysis. Instead, we suggest these histidines play a key role in domain structure or stability.[Abstract] [Full Text] [Related] [New Search]