These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils.
    Author: Yip TC, Tsang DC, Ng KT, Lo IM.
    Journal: Chemosphere; 2009 Jan; 74(2):301-7. PubMed ID: 18851868.
    Abstract:
    The effectiveness of using biodegradable EDDS (S,S-ethylenediaminedisuccinic acid) for metal extraction has drawn increasing attention in recent years. In this study, an empirical model, which utilized the initial metal distribution in soils and a set of parameter values independently determined from sequential extraction, was developed for estimating the time-dependent heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. The model simulation provided a satisfactory description of the experimental results of the 7-d extraction kinetics of Cu, Zn, and Pb in both artificially contaminated and field-contaminated soils. Thus, independent and prior assessment of extraction efficiency would be available to facilitate the engineering applications of EDDS. Furthermore, a simple empirical equation using the initial metal distribution was also proposed to estimate the extraction efficiency at equilibrium. It was found that, for the same type of soils, higher extraction efficiency was achieved in multi-metal contaminated soils than in single-metal contaminated soils. The differences were 4-9%, 9-16%, and 21-31% for Cu, Zn, and Pb, respectively, probably due to the larger proportion of exchangeable and carbonate fractions of sorbed Zn and Pb in multi-metal contaminated soils. EDDS-promoted mineral dissolution, on the other hand, was more significant in multi-metal contaminated soils as a result of the higher EDDS concentration applied to the soils of higher total metal content.
    [Abstract] [Full Text] [Related] [New Search]