These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. Author: Kim DS, Kim JE, Kwak SE, Choi KC, Kim DW, Kwon OS, Choi SY, Kang TC. Journal: J Comp Neurol; 2008 Dec 10; 511(5):581-98. PubMed ID: 18853423. Abstract: Recently we reported that astroglial loss and subsequent gliogenesis in the dentate gyrus play a role in epileptogenesis following pilocarpine-induced status epilepticus (SE). In the present study we investigated whether astroglial damages in the hippocampo-entorhinal complex following SE are relevant to pathological or electrophysiological properties of temporal lobe epilepsy. Astroglial loss/damage was observed in the entorhinal cortex and the CA1 region at 4 weeks and 8 weeks after SE, respectively. These astroglial responses in the hippocampo-entorhinal cortex were accompanied by hyperexcitability of the CA1 region (impairment of paired-pulse inhibition and increase in excitability ratio). Unlike the dentate gyrus and the entorhinal cortex, CA1 astroglial damage was protected by conventional anti-epileptic drugs. alpha-Aminoadipic acid (a specific astroglial toxin) infusion into the entorhinal cortex induced astroglial damage and changed the electrophysiological properties in the CA1 region. Astroglial regeneration in the dentate gyrus and the stratum oriens of the CA1 region was found to originate from gliogenesis, while that in the entorhinal cortex and stratum radiatum of the CA1 region originated from in situ proliferation. These findings suggest that regional specific astroglial death/regeneration patterns may play an important role in the pathogenesis of temporal lobe epilepsy.[Abstract] [Full Text] [Related] [New Search]