These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of oxygen-derived free radicals in indomethacin-induced gastric injury. Author: Vaananen PM, Meddings JB, Wallace JL. Journal: Am J Physiol; 1991 Sep; 261(3 Pt 1):G470-5. PubMed ID: 1887894. Abstract: The role of oxygen-derived free radicals in the pathogenesis of acute gastric ulceration induced by indomethacin (Indo) was investigated in rats. Gastric damage was assessed by blood-to-lumen leakage of 51Cr-EDTA, as well as by measuring the extent of macroscopically visible hemorrhagic lesions. The stomach was perfused with isotonic saline for 30 min, followed by Indo (10 mg/ml for 30 min) and HCl (100 mM for 60 min). Rats were given a continuous intravenous infusion of the antioxidant enzymes superoxide dismutase (SOD) or catalase or the iron-chelating agent deferoxamine. Additional rats received an intravenous infusion of the vehicle (control group) or were pretreated with prostaglandin E2 (100 micrograms/kg ip) or allopurinol (50 mg/kg po). Exposure of the stomach to Indo caused a fourfold increase in 51Cr-EDTA leakage compared with that observed in rats receiving only the vehicle for Indo. Subsequent exposure of the stomach to HCl resulted in a further twofold increase in 51Cr-EDTA leakage. Treatment with SOD, catalase, or deferoxamine significantly (P less than 0.05) reduced 51Cr-EDTA leakage during the intragastric perfusion with Indo and during the subsequent exposure to HCl. Pretreatment with PGE2 reduced 51Cr-EDTA leakage during perfusion with HCl only. Pretreatment with allopurinol did not significantly affect 51Cr-EDTA leakage at any time during the experiment. In addition to reducing the leakage of 51Cr-EDTA into the gastric lumen, SOD, catalase, and PGE2 significantly reduced the extent of macroscopically visible mucosal damage (P less than 0.05). These results support the hypothesis that oxygen-derived free radicals, probably derived from neutrophils, contribute to the pathogenesis of Indo-induced ulceration.[Abstract] [Full Text] [Related] [New Search]