These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Author: DeWeerd KA, Concannon F, Suflita JM. Journal: Appl Environ Microbiol; 1991 Jul; 57(7):1929-34. PubMed ID: 1892383. Abstract: Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]