These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 5alpha-androstane-3alpha,17beta-diol selectively activates the canonical PI3K/AKT pathway: a bioinformatics-based evidence for androgen-activated cytoplasmic signaling. Author: Dozmorov MG, Yang Q, Matwalli A, Hurst RE, Culkin DJ, Kropp BP, Lin HK. Journal: Genomic Med; 2007; 1(3-4):139-46. PubMed ID: 18923939. Abstract: 5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.[Abstract] [Full Text] [Related] [New Search]