These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats.
    Author: Antonini JM, Roberts JR, Stone S, Chen BT, Schwegler-Berry D, Frazer DG.
    Journal: Inhal Toxicol; 2009 Feb; 21(3):182-92. PubMed ID: 18925477.
    Abstract:
    Many workers worldwide are continually exposed to complex aerosols generated from welding processes. The objective was to assess the effect of inhalation exposure to mild steel (MS) welding fume on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to MS fume at a concentration of 40 mg/m(3) x 3 h/day x 3 or 10 days using a robotic welding fume generator. Controls were exposed to filtered air. To assess lung defense responses, a group of animals were intratracheally inoculated with 5 x 10(4) Listeria monocytogenes 1 day after the last daily exposure. Welding particles were collected during exposure, and chemical composition and particle size were determined. After exposure, lung injury, inflammation, and host defense (bacterial clearance) were measured. The particles were composed of iron (80.6 %) and manganese (14.7 %) with a mass median aerodynamic diameter of 0.31 microm. No significant difference was observed in lung injury or inflammation after MS fume inhalation at 1, 4, and 11 days after the last exposure. However, there were significantly more bacteria at 3 days after infection in the lungs of the animals exposed to MS fume compared to air controls. Acute exposure of rats to MS fume had no effect on injury and inflammation, but suppressed lung defense responses after infection. More chronic inhalation studies are needed to further examine the immune effects and to elucidate the possible mechanisms of the suppressed lung defense response to infection associated with the inhalation of MS welding fume.
    [Abstract] [Full Text] [Related] [New Search]