These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Author: Zhang W, Chen Y, Wei H, Zheng C, Sun R, Zhang J, Tian Z. Journal: Clin Cancer Res; 2008 Oct 15; 14(20):6432-9. PubMed ID: 18927282. Abstract: PURPOSE: Non-small cell lung carcinoma (NSCLC) is one of most common malignant diseases and usually is resistant against apoptosis-inducing chemotherapy. This study is to explore the antiapoptotic mechanisms of interleukin (IL)-22 in human lung cancer. EXPERIMENTAL DESIGN: Nineteen cases with stage I to III NSCLC were collected to determine the expression of IL-22. Stable transfection of human IL-22 cDNA into A549 and PG cells and transfection of IL-22-RNA interference (RNAi) into these cancer cell lines were done to reveal the molecular mechanisms of IL-22. RESULTS: It was found that IL-22 was highly expressed in primary tumor tissue, malignant pleural effusion, and serum of patients with NSCLC. IL-22R1 mRNA was also detected in lung cancer tissues as well as lung cancer cell lines. Overexpression of IL-22 protected lung cancer cell lines from serum starvation-induced and chemotherapeutic drug-induced apoptosis via activation of STAT3 and its downstream antiapoptotic proteins such as Bcl-2 and Bcl-xL and inactivation of extracellular signal-regulated kinase 1/2. Exposure to blocking antibodies against IL-22R1 or transfection with the IL-22-RNAi plasmid in vitro resulted in apoptosis of these lung cancer cells via STAT3 and extracellular signal-regulated kinase 1/2 pathways. Furthermore, an in vivo xenograft study showed that administration of IL-22-RNAi plasmids significantly inhibited the human tumor cell growth in BALB/c nude mice. CONCLUSIONS: Our study indicates that autocrine production of IL-22 contributes to human lung cancer cell survival and resistance to chemotherapy through the up-regulation of antiapoptotic proteins.[Abstract] [Full Text] [Related] [New Search]