These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene expression of nutrient transporters in the small intestine of chickens from lines divergently selected for high or low juvenile body weight. Author: Mott CR, Siegel PB, Webb KE, Wong EA. Journal: Poult Sci; 2008 Nov; 87(11):2215-24. PubMed ID: 18931170. Abstract: Nutrient transporters in the small intestine are responsible for dietary nutrient assimilation; therefore, the expression of these transporters can influence overall nutrient status as well as the growth and development of the animal. This study examined correlated responses to selection in the developmental gene expression of PepT1, EAAT3, SGLT1, and GLUT5 in the small intestine of chickens from lines divergently selected for 48 generations for high (HH) or low (LL) 56-d BW and their reciprocal crosses (HL and LH). Duodenum, jejunum, and ileum were collected from male and female chicks on embryonic d 20, day of hatch with no access to feed, and d 3, 7, and 14 posthatch. Total RNA was extracted, and nutrient transporter expression was assayed by real-time PCR using the relative quantification method. In comparing male and female HH and LL chicks, there was a mating combination x age x sex interaction for PepT1 expression (P < 0.001), a main effect of sex for EAAT3 (P < 0.05) and SGLT1 (P < 0.001) expression, and an age x sex interaction for SGLT1 expression (P < 0.001). These results demonstrate a sexual dimorphism in the capacity to absorb nutrients from the intestine, which has implications for the poultry industry with regard to diet formulations for straight-run and sex-separate grow-out operations. Results from comparing male LL, LH, HL, and HH chicks indicate that selection for high or low juvenile BW may have influenced the gene expression profiles of these nutrient transporters in the small intestine, which may contribute to the overall differences in the growth and development of these lines of chickens.[Abstract] [Full Text] [Related] [New Search]