These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation.
    Author: Mergner T, Siebold C, Schweigart G, Becker W.
    Journal: Exp Brain Res; 1991; 85(2):389-404. PubMed ID: 1893987.
    Abstract:
    The vestibular signal of head motion in space must be complemented by a neck signal of the trunk-to-head excursion in order to provide the individual with information on trunk motion in space. This consideration led us to study psychophysically the role of vestibular-neck interaction for human self-motion perception. Subjects (Ss) were presented with passive horizontal rotations of their trunk and/or head (sinusoidal rotations, f = 0.025 - 0.4 Hz) in the dark for vestibular and neck stimulation, as well as for combinations of both. Ss' perception was evaluated in terms of gain (veridical perception of stimulus magnitude, G = 1), phase, and detection threshold. (1) Perception of trunk rotation in space. During vestibular stimulation (whole-body rotation) and neck stimulation (trunk rotation with the head kept stationary) the frequency-transfer characteristics underlying this perception were very similar. The gain fell short; it was only about 0.7 at 0.4 and 0.2 Hz stimulus frequency and was further attenuated with decreasing frequency. In contrast, the phase was close to that of actual trunk position. The gain attenuation was found to be a function of the peak angular velocity of the stimulus, a fact, which we related to a 'velocity threshold' of the order of 1 deg/s. During the various vestibular-neck combinations used, Ss' perception was again erroneous, reflecting essentially the sum of its two non-ideal constituents. However, there was one noticeable exception; during the combination 'head rotation on stationary trunk', Ss veridically perceived their trunk as stationary (compatible with the notion that the sum yielded 'zero'). (2) Perception of head rotation in space. During vestibular stimulation, Ss' estimates showed the same non-ideal gain-vs.-frequency characteristics as described above for the trunk. Neck stimulation induced an illusion as if the head had been rotated in space. This neck contribution was such that, when it was combined with its vestibular counterpart during head rotation on stationary trunk, the perception became almost veridical. On closer inspection, however, this neck contribution was found to reflect the sum of two components; one was the non-ideal neck signal contributing to the perception of 'trunk in space', the other was an almost ideal neck signal of head-on-trunk rotation. (3) The results could be described by a simple model. In this model, the erroneous vestibular signal 'head in space' is primarily used to create an internal representation of 'trunk in space'.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]