These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly chemoselective reductive amination of carbonyl compounds promoted by InCl3/Et3SiH/MeOH system.
    Author: Lee OY, Law KL, Ho CY, Yang D.
    Journal: J Org Chem; 2008 Nov 21; 73(22):8829-37. PubMed ID: 18939879.
    Abstract:
    A new strategy has been developed for reductive amination of aldehydes and ketones with the InCl3/Et3SiH/MeOH system, which is a nontoxic system with highly chemoselective and nonwater sensitive properties. The methodology can be applied to a variety of cyclic, acyclic, aromatic, and aliphatic amines. Functionalities including ester, hydroxyl, carboxylic acid, and olefin are found to be stable under our conditions. The reaction shows a first-order kinetics profile with respect to both InCl3 and Et3SiH. Spectroscopic techniques such as NMR and ESI-MS have been employed to probe the active and resulting species arising from InCl3 and Et3SiH in MeOH, which are important in deriving a mechanistic proposal. In the ESI-MS studies, we have first discovered the existence of stable methanol-coordinated indium(III) species which are presumably responsible for the gentle generation of indium hydride at room temperature. The solvent attribution was crucial in tuning the reactivity of [In-H] species, leading to the establishment of mild reaction conditions. The system is superior in flexible tuning of hydride reactivity, resulting in the system being highly chemoselective.
    [Abstract] [Full Text] [Related] [New Search]