These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Author: Baul TS, Basu S, de Vos D, Linden A. Journal: Invest New Drugs; 2009 Oct; 27(5):419-31. PubMed ID: 18941713. Abstract: Potassium 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}-4-methyl-pentanoate (L(1)HK) and potassium 2-{[(E)-1-(2-hydroxyphenyl)alkylidene]amino}-4-methyl-pentanoates (L(2)HK-L(3)HK) underwent reactions with Ph(n)SnCl(4-n) (n = 2 and 3) to give the amino acetate functionalized Schiff base organotin(IV) complexes [Ph(3)SnLH](n)(1-3) and [Ph(2)SnL] (4), respectively. These complexes have been characterized by (1)H, (13)C, (119)Sn NMR, IR spectroscopic techniques in combination with elemental analyses. The crystal structures of 1 and 3 were determined. The crystal structures reveal that the complexes exist as polymeric chains in which the L-bridged Sn-atoms adopt a trans-R(3)SnO(2) trigonal bipyramidal configuration with the Ph groups in the equatorial positions and the axial locations occupied by a carboxylate oxygen atom from one carboxylate ligand and the alcoholic or phenolic oxygen atom of the next carboxylate ligand in the chain. The carboxylate ligands coordinate in the zwitterionic form with the alcoholic/phenolic proton moved to the nearby nitrogen atom. The solution structures were predicted by (119)Sn NMR spectroscopy. When these organotin(IV) complexes were tested against A498, EVSA-T, H226, IGROV, M19 MEL, MCF7 and WIDR human tumor cell lines, the average ID(50) values obtained were 55, 80 and 35 ng/ml for triphenyltin(IV) compounds 1-3, respectively. The most cytotoxic triphenyltin(IV) compound in the present report (3) with an average ID(50) value of around 35 ng/ml is found to be more cytotoxic for all the cell lines studied than doxorubicin, cisplatin, 5-fluorouracil and etoposide.[Abstract] [Full Text] [Related] [New Search]