These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons.
    Author: Cerovský V, Hovorka O, Cvacka J, Voburka Z, Bednárová L, Borovicková L, Slaninová J, Fucík V.
    Journal: Chembiochem; 2008 Nov 24; 9(17):2815-21. PubMed ID: 18942691.
    Abstract:
    A novel antimicrobial peptide designated melectin was isolated from the venom of the cleptoparasitic bee Melecta albifrons. Its primary sequence was established as H-Gly-Phe-Leu-Ser-Ile-Leu-Lys-Lys-Val-Leu-Pro-Lys-Val-Met-Ala-His-Met-Lys-NH(2) by Edman degradation and ESI-QTOF mass spectrometry. Synthetic melectin exhibited antimicrobial activity against both gram-positive and -negative bacteria and it degranulated rat peritoneal mast cells, but its hemolytic activity was low. The CD spectra of melectin measured in the presence of trifluoroethanol and sodium dodecyl sulfate showed a high content alpha-helices, which indicates that melectin can adopt an amphipathic alpha-helical secondary structure in an anisotropic environment such as the bacterial cell membrane. To envisage the role of the proline residue located in the middle of the peptide chain on biological activity and secondary structure, we prepared several melectin analogues in which the Pro11 residue was either replaced by other amino acid residues or was omitted. The results of biological testing suggest that a Pro kink in the alpha-helical structure of melectin plays an important role in selectivity for bacterial cells. In addition, a series of N- and C-terminal-shortened analogues was synthesized to examine which region of the peptide is related to antimicrobial activity.
    [Abstract] [Full Text] [Related] [New Search]