These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Virulence and Molecular Diversity in Cochliobolus sativus. Author: Zhong S, Steffenson BJ. Journal: Phytopathology; 2001 May; 91(5):469-76. PubMed ID: 18943591. Abstract: ABSTRACT Spot blotch, caused by the fungal pathogen Cochliobolus sativus, is an important disease of barley in many production areas of the world. To assess genetic diversity in this pathogen, a worldwide collection of C. sativus isolates was evaluated for virulence on barley and DNA polymorphism. Three pathotypes (0, 1, and 2) were identified among the 22 isolates tested in this study and the 36 isolates characterized previously on three barley differentials (ND5883, Bowman, and NDB112) that differ in their resistance to C. sativus. Pathotype 2, which exhibits high virulence on cv. Bowman, was only found in North Dakota, whereas the other two pathotypes occurred in many other regions of the world. Genetic diversity of the 58 C. sativus isolates, together with isolates of three related pathogenic Cochliobolus spp. (C. heterostrophus, C. carbonum, and C. victoriae) was analyzed using amplified fragment length polymorphism (AFLP) markers. A total of 577 polymorphic AFLP markers were recorded among the 70 isolates of the four Cochliobolus spp. using eight primer combinations. Cluster analysis revealed distinct groups corresponding to the four different species, except in one case where race 0 of C. carbonum was placed in an outgroup that may belong to a different species. In C. sativus, 95 polymorphic AFLP markers were detected with the eight primer pairs used, and each isolate exhibited a unique AFLP pattern. Allelic diversity in the pathotype 2 group was lower (0.10) than in the pathotype 0 (0.23) and pathotype 1 (0.15) groups, indicating that pathotype 2 may have arisen more recently. Cluster analysis did not reveal a close correlation between pathotypes and AFLP groups, although two AFLP markers unique to pathotype 2 isolates were identified. This low correlation suggests that genetic exchange may have occurred through parasexual recombination in the fungal population. Some isolates collected from different regions of the world were clustered into the same AFLP group, suggesting that migration of the fungal pathogen around these regions has occurred.[Abstract] [Full Text] [Related] [New Search]